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Abstract This article presents and evaluates a family of AlphaZero value
targets, subsuming previous variants and introducing AlphaZero with greedy
backups (A0GB). Current state-of-the-art algorithms for playing board games
use sample-based planning, such as Monte Carlo Tree Search (MCTS), com-
bined with deep neural networks (NN) to approximate the value function.
These algorithms, of which AlphaZero is a prominent example, are computa-
tionally extremely expensive to train, due to their reliance on many neural
network evaluations. This limits their practical performance. We improve the
training process of AlphaZero by using more effective training targets for the
neural network. We introduce a three-dimensional space to describe a family
of training targets, covering the original AlphaZero training target as well as
the soft-Z and A0C variants from the literature. We demonstrate that A0GB,
using a specific new value target from this family, is able to find the opti-
mal policy in a small tabular domain, whereas the original AlphaZero target
fails to do so. In addition, we show that soft-Z, A0C and A0GB achieve bet-
ter performance and faster training than the original AlphaZero target on two
benchmark board games (Connect-Four and Breakthrough). Finally, we juxta-
pose tabular learning with neural network based value function approximation
in Tic-Tac-Toe, and compare the effects of learning targets therein.

Keywords Reinforcement learning · Sample-based planning · AlphaZero ·
MCTS
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1 Introduction

Mastering complex board games has been a long studied topic in AI, as board
games provide well-defined complex challenges that allow for easy measure-
ment of performance, and thus make for ideal AI testbeds. Over the past
decades, computers have been able to defeat human champions on many of
these games, such as Checkers [15] (1994), Chess [5] (1997) and more recently
Go [19] (2016). Algorithms for playing such games initially relied on exhaustive
search methods such as alpha-beta pruning in combination with hand-crafted
evaluation functions. More recently, these exhaustive search methods have
been outperformed by Monte Carlo Tree Search (MCTS) and hand-crafted
evaluations have given way to deep neural networks (NNs). A successful ex-
ample of this is the AlphaZero approach [19,20,21]. In contrast to vanilla
MCTS, which performs rollouts for evaluating leaf nodes, AlphaZero uses a
policy-value net—a NN that provides value estimates as well as policy priors to
MCTS. MCTS guided by this NN is used to generate data; the NN is trained
on this data to provide better estimates; and using the improved NN, MCTS
can in turn generate better training data, in a mutually improving cycle. One
way to view this combination of NN and MCTS is as that of an expert and
an apprentice, where the apprentice (NN) continually learns new knowledge
from the expert agent (MCTS+NN), and is in turn able to improve the expert
by providing it with better estimates [1]. Even though these algorithms are
powerful, their interleaved training process has proven to be computationally
extremely expensive.

We argue that the training process of AlphaZero can be improved by us-
ing more effective training targets for the neural network. The value head of
the neural network provides estimates for the value of a given game position
for the current player to move, and needs a value target to be trained on.
AlphaZero uses game outcomes of self-play as training targets. The self-play,
however, incorporates non-greedy behaviour, which is necessary to explore the
state space during training. Therefore, these self-play game outcomes are only
accurate value targets if the final agent, after training has ended, incorporates
non-greedy exploration as well—AlphaZero behaves like an “on-policy” rein-
forcement learning algorithm (akin to SARSA). In practice however, moves are
selected greedily when the trained solution is deployed, e.g. during tournament
play. This makes the “on-policy” training undesirable in two ways:

1. Performance of AlphaZero is limited due to the value network not con-
verging to the true values for a greedy policy that would be followed in a
tournament setting.

2. Learned values and performance of AlphaZero are sensitive to the amount
of exploration and associated hyperparameters (move selection tempera-
ture and Dirichlet noise). The more exploration is added in training, the
more the value estimates deviate from the true values for a greedy policy.

We propose a family of training targets for AlphaZero that subsumes the orig-
inal AlphaZero value target and others from the literature. We select one spe-
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cific new target, resulting in AlphaZero with greedy backups (A0GB), which
allows AlphaZero’s value network to train on value estimates valid for greedy
play, improving playing strength and training efficiency.

Replacing the self-play game outcomes with various other targets has been
explored in previous works [6,12]. However, these papers did not remove ex-
ploration from the value targets. Instead, they had different motives for using
alternative value targets. Moerland’s version of AlphaZero aims to be suitable
for continuous action spaces [12], while Carlsson’s adaptation is motivated by
the use of additional samples from within the AlphaZero search tree [6]. The
value targets used in these papers are discussed in more detail in Section 3.
Even though these value targets are no longer on-policy, they still have explo-
ration incorporated within them.

The remainder of this paper first introduces background in Section 2, and
then elaborates on our proposed off-policy value target in Section 3, relating
it to other value targets used in the literature by introducing a family of value
targets. In Section 4, we show that this new value target allows a tabular
version of AlphaZero to converge to an optimal policy whereas other value
targets fail to do so. In addition, we demonstrate our value target on two larger
board games (Connect-Four, Breakthrough) and we analyze the performance
in more depth on the medium sized Tic-Tac-Toe domain. Finally, Section 5
provides the discussion and conclusion.

2 Background

The AlphaZero algorithm builds on two primary components: Monte Carlo
Tree Search (MCTS) to perform search and deep neural networks (NN) for
function approximation. In this section, we first give a brief overview of MCTS.
After this, in Subsection 2.2, we show how MCTS is combined with NN in the
AlphaZero algorithm. Finally, in Subsection 2.3, we explain the differences
between on- and off-policy learning in reinforcement learning algorithms.

2.1 Monte Carlo Tree Search

MCTS is a best-first anytime search algorithm which, in its vanilla form, uses
Monte Carlo sampling to evaluate the value of a state [9,7]. The algorithm
starts from a state s for which the optimal action a is to be determined.
Then, over a number of simulations, a game tree is progressively built, keeping
track of the statistics of all nodes representing possible future states. A single
simulation consists of four phases [4]:

1. Selection: starting from the root node, a selection policy is recursively
applied to descend through the tree until an unselected action is reached.
This selection policy has to maintain a balance between exploiting nodes
with high value estimates and exploring less frequently visited nodes. A
popular selection policy is called Upper Confidence Bound Applied to Trees
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(UCT) [9], which selects nodes based on an upper confidence bound for the
value estimates:

a = arg max
a′

(
Q(s, a′) + cuct

√
ln (N(s))

N(s, a′)

)
(1)

Here, Q(s, a′) is the estimated value for selecting action a′ from state s. cuct
is a coefficient determining the amount of exploration in the search. N(s)
and N(s, a′) are the visit counts of state s and the child node associated
with action a′ respectively.

2. Expansion: Typically one new node is added to the search tree, below the
newly selected action.

3. Simulation: Starting from the new node, a simulation is run according to
a rollout policy to produce an outcome, or return, r. This rollout policy
can be as simple as selecting random actions at every step.

4. Backpropagation: The outcome is backpropagated through the selected
nodes to update their statistics. This backpropagation is usually done by
averaging the final reward over the number of visits the node has received:

Q(s, a)← (N(s, a) ·Q(s, a) + r)

N(s, a) + 1

N(s, a)← N(s, a) + 1

These simulation steps are repeated until the available search time has ended.
Finally, the root state’s action with the highest visit count is returned as a
recommendation for execution. Typically, planning restarts in the resulting
state.

2.2 Combined searching and learning

This section explains how MCTS and NNs can be combined to improve the
performance of MCTS, as done in the AlphaZero line of algorithms. Vanilla
MCTS relies on Monte Carlo evaluations to get a value estimate of a state.
These value estimates can be inaccurate due to high variance. Instead, Al-
phaZero uses neural networks as function approximators to estimate state
values. NNs can be trained in a supervised fashion, e.g. on a dataset of expert
play. One core insight that AlphaZero exploits is that this expert play does
not have to be human play. Rather, AlphaZero uses a reinforcement learning
approach where MCTS is used as a policy improvement operator. In other
words, MCTS is used to create stronger games than the neural network itself
would have been able to play. These stronger game records can then be used
to retrain the neural network, resulting in a cycle of self-improvement.
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2.2.1 The self-play training loop

AlphaZero training consists of two main steps that are performed in an itera-
tive loop, as illustrated by Algorithm 1. The first step is to generate a set of
training games through self-play. For every move in these games, a tree search
is performed after which the next action is selected probabilistically based on
the visit counts at the root. During search, the neural network is used in two
ways. First, instead of doing a Monte Carlo rollout to get a value estimate
when a new node is reached, the neural network provides a value estimate,
v̂NN (s). Second, the policy output of the neural network, πNN (s), provides
a vector of prior action probabilities. This output guides the search towards
moves that the neural network predicts to be promising. To do this, the policy
output is incorporated in a variant of the UCT formula, called PUCT [2], for
action selection during search as can be seen in Equation 2. The states vis-
ited by all training games s, the associated game results y and the normalized
MCTS visit counts of the root’s child nodes (which we call πvisits(s)) are then
stored in a replay buffer. The second step is to train the neural network on
the replay buffer. The policy head is trained to approximate πvisits(s) through
a cross-entropy loss. Therefore, future searches will be biased towards moves
that are predicted to be visited often. The value head is trained on the value
targets, y, in this case the final game outcome. This is done using a mean
squared error loss. An additional L2 regularization term is added to reduce
overfitting of the NN parameters, θ. The complete loss function is given in
Equation 3.

PUCT (s, a) = Q(s, a) + cpuct · πNN (a|s)
√
N(s)

N(s, a) + 1
(2)

l = (y − v̂NN )2 − πvisits(s)T log πNN (s) + wL2||θ||2 (3)

2.2.2 Exploration in AlphaZero

To achieve diversity in the tree search as well as in the replay buffer, three
types of exploration are present in the AlphaZero training. First, there is
the exploration associated with the PUCT parameter cpuct, as explained in
Subsection 2.1. Second, Dirichlet noise is added to the prior probabilities of
the root node’s children at the start of every search, to ensure that every
node has a nonzero chance of being visited at least once during search. This
modifies the PUCT equation at a root node to Equation 4, with πNN,noisy(s, a)
as defined in Equation 5. fdir ∈ [0, 1] and α ∈ (0,∞] are hyperparameters that
control the amount and concentration of Dirichlet noise respectively.

UCTroot(s, a) = Q(s, a) + cpuct · πNN,noisy(s, a)

√
N(s)

N(s, a) + 1
(4)

πNN,noisy(s, ·) = (1− fdir)πNN (s, ·) + fdirDir(α) (5)



6 Daniel Willemsen et al.

Algorithm 1: Simplified AlphaZero training loop
Result: A trained neural network
neural network = NeuralNetwork();
replay buffer = list();
while ngames played < ntraining games do

samples = list();
// create a generation of new game samples

for i← 0 to ngames per generation do
// play a single game

game = new game(neural network) ;
moves = list();
while game not terminal do

s = game.get state() ;
// create and search tree

Tree = game.search() ;
// sample action

action = Tree.select action();
// store move & tree

moves.append((s, Tree));
// apply action in real game

game.move(action) ;

end
// set policy and value targets

value = game.outcome() ; // set value target

for j ← 0 to length(moves) do
(s, Tree) = moves[j];
// set policy target

π = Tree.root.child visits();
samples.append((s, π, value));

end

end
// add new samples to replay buffer

replay buffer.update(samples) ;
// train neural network on replay buffer

neural network.train(replay buffer);

end

Finally, after the search, the action to play is selected probabilistically
based on the exponentiated visit counts of each of the root’s child nodes,
following Equation 6. The temperature τ determines the amount of exploration
in the move selection in training games.

πAlphaZero(s, a) ∝ N(s, a)1/τ (6)

2.2.3 Comparing AlphaZero, AlphaGo and Expert Iteration

The AlphaZero lineage of algorithms consists of a number of sequentially de-
veloped algorithms. The first algorithm in this series is AlphaGo [19], which is
initially trained in a supervised fashion on a dataset of human expert play . Af-
ter this, it improves its playing strength further through self-play. This version
has separate policy and value networks. The second algorithm in the series,
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AlphaGo Zero [21], no longer has separate policy and value networks, combin-
ing them into a single network. Also, AlphaGo Zero does not use supervised
training on a human dataset, only learning from self-play. The third algorithm
that was developed, AlphaZero [20], is a version of AlphaGo Zero suitable for
other games than Go. It no longer makes use of any Go-specific game fea-
tures. Further, the neural network training is now done asynchronously, in
parallel with the game generation. Recently, a fourth algorithm was proposed,
MuZero [16], which employs a learned game model within the MCTS simu-
lation. In addition to the AlphaZero lineage, another, very similar, algorithm
has been developed in parallel: Expert Iteration (ExIt)[1]. This algorithm is
used to play a game called Hex. Initially, ExIt only trained a policy network.
This network was trained similarly to AlphaGo Zero. Experiments with an ad-
ditional value head were also performed. The value estimates, however, were
not generated from games with full searches performed in every move. Instead,
the value target was retrieved from playing games purely based on the prior
policy of the policy network. The output of the policy network is used in the
MCTS in a slightly different manner than is done by AlphaZero. The modified
UCT formula from ExIt is reproduced in Equation 7. Here, wp is a parameter
to control the relative importance of the neural network policy.

UCTExIt(s, a) = Q(s, a) + cuct

√
logN(s)

N(s, a)
+ wp

πNN (s, a)

N(s, a) + 1
(7)

2.3 On-policy and off-policy learning

The difference between on-policy and off-policy algorithms is an important
distinction in reinforcement learning, which makes it also worth considering
when studying AlphaZero-like algorithms. In reinforcement learning, agents
are acting in an environment following a certain policy, the behavioural pol-
icy. Whilst doing this, the algorithms learn about the values for a (possibly
different) target policy. If the behavioural policy and the target policy are
the same, the learning algorithm is called “on-policy”, if not, the algorithm is
called “off-policy”. On-policy learning is the simplest and avoids many difficul-
ties associated with off-policy learning, such as the “deadly triad”, where the
combination of function approximation, off-policy learning and bootstrapping
can result in divergent behaviour [22]. Despite this caveat, off-policy learning
may improve the learning process by decoupling exploration from the value
estimate, and multiple successful reinforcement learning algorithms have used
it [10,11].

3 Value targets in AlphaZero

In this section, we start with explaining the notation of AlphaZero self-play.
After this, in Subsection 3.2, three value targets from the literature are de-
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scribed. A new greedy value target is proposed in Subsection 3.3. Finally, we
show how these targets are related to each other in Subsection 3.4

3.1 Policies, value functions and notation

In AlphaZero, two types of games are used during self-play. First, there are the
“real” games in which AlphaZero plays against itself. All states encountered
in these real games are then used to train the neural network. Second, there
are the “simulated” games: for every move that AlphaZero makes in a real
game, it performs a Monte Carlo Tree Search. This search consists of many
simulated games, from which the game tree is constructed. For every node in
this game tree, statistics are kept as explained in Subsection 2.1. Both the real
game as well as the simulated games make use of a perfect model of the game.
After finishing a real game, we can traverse through both the real game as
well as through the game trees to find suitable value targets. We consider the
following two policies for traversing through these games and trees:

1. πMCTS(s, sroot): starting at state s, in the MCTS tree which was created
from root node sroot, this policy selects the next action based on the nor-
malized visit counts of the children of node s. This is a policy that traverses
the game tree built of simulated games. We leave out the a parameter in
these policies, slightly abusing our previously used notation for policies.
Leaving out this parameter indicates the function returns a probability
vector over all possible actions.

2. πAlphaZero(s): the AlphaZero move policy at a root state s. This policy
traverses the real game. Every move is performed by running MCTS, and
selecting actions with probabilities proportional to the exponentiated visit
counts at the root node—which is influenced by the Dirichlet noise and the
temperature, as explained in subsubsection 2.2.2.

Both policies have to incorporate exploration. πMCTS includes exploratory
moves through exploration within PUCT. In contrast, πAlphaZero needs to
incorporate exploration to create diverse training data for the neural network,
and avoid overfitting. Both these policies have greedy versions associated with
them: πMCTS,greedy and πAlphaZero,greedy, which select the action with the
highest visit count (in simulated and real games, respectively) greedily. These
are not directly used during the games of self-play training, but for deployment
in e.g. a competition πAlphaZero,greedy would be used.

Every node in a search tree has two estimated values associated with it:

1. v̂NN (s): The value of the represented state according to the current neural
network.

2. v̂MCTS(s, sroot) The value of the represented state according to an MCTS
search starting at root state sroot.

We consider games where the only reward the agent receives is a terminal
reward r(sterminal) = ±1 indicating the win or loss of a game, or 0 for
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a tie. In addition, we consider deterministic games. This allows us to use
state values within the MCTS rather than state-action values. In our case,
v̂MCTS(sroot, sroot) becomes the average value from all MCTS traces from
sroot. Note that for any terminal state, the values of v̂MCTS(sterminal, sroot)
and the final game outcome r(sterminal) are identical, as in such a terminal
node the true reward r is used rather than a NN estimation. At any leaf node
in the search tree with only a single visit, v̂MCTS(sleaf , ·) = v̂NN (sleaf ). Let’s
denote the multi-timestep state transition function with Kn

π : S −→ S,
which uses policy π to traverse either the simulated game tree or the real game
for n moves. n =∞ indicates that the game tree is traversed until a leaf node
or a terminal node is reached.

Now, to relate all value targets to on-policy and off-policy learning, consider
the optimal value function, v∗(s). The optimal value function is the maximum
value function over all policies [18]:

v∗(s) = max
π

vπ(s)

Ideally, AlphaZero would learn these optimal values and their associated opti-
mal policy. However; since this is computationally not feasible, it is instead de-
sirable to learn about the policy that is used during final play: πAlphaZero,greedy.
We thus strive to learn about the target y∗ that is the expectation of the
stochastic return G(τ) =

∑T−1
t=0 γtr(st, at) resulting from following the trajec-

tory τ associated with the policy πAlphaZero,greedy. In this article, we consider
games of finite horizon where the only reward is one associated with a terminal
state, thus we maximise undiscounted return (i.e., γ = 1) and can simplify this
expectation further:

y∗ = vπAlphaZero,greedy
(s)

= Eτ∼πAlphaZero,greedy
[G(τ)]

= Eτ
[
r
(
K∞πAlphaZero,greedy

(s)
)]

Finally, to describe how the different value targets approximate this value
target, we introduce three kinds of policies: the ideal target policy, the ac-
tual target policy and the behavioural policy. As explained in Subsection 2.3,
the behavioural policy is the policy that the agent follows during self-play:
πAlphaZero. The ideal target policy is the target we wish to learn about:
πAlphaZero,greedy. The actual target policy is the policy that is being learned
about through the value targets. Getting this actual target policy to be a close
approximation of the ideal target policy, with low bias1 and variance, is the
goal for designing the value targets. Actual target policies that have explo-
ration incorporated within them result in biased value targets: sub-optimal
exploratory moves bias the value of all states further on. Target policies that

1 The bias that we talk about here is a different bias than the one associated with the
bias-variance trade-off between bootstrapping and Monte Carlo methods. That bias is asso-
ciated with the (transient) effect of value initialization. The bias we are considering here is
permanent and associated with the difference between the actual and ideal target policy.
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Fig. 1: The relationship between the different value targets; AlphaZero uses
terminated games, while greedy backups target leaves of the tree (not neces-
sarily terminal).

perform multiple steps using πMCTS,greedy contain more variance. As every
step taken in πMCTS,greedy selects its action based on fewer MCTS visits than
the previous one, more uncertainty and thus variance is added to the value
target. A higher variance can limit the learning speed of AlphaZero as more
samples are needed to get a reliable estimate.

3.2 Value targets from the literature

We can now describe the original AlphaZero and other value targets y in the
literature using the notation previously described. These value targets are also
illustrated in Figure 1.

AlphaZero target In the original AlphaZero paper, the value target for every
state s is set to be equal to the final game outcome of playing the game, follow-
ing the non-greedy AlphaZero policy πAlphaZero. This results in the following
value target:

yAlphaZero(s) = v̂MCTS (sterminal, sterminal)

= r (sterminal)

where sterminal = K∞πAlphaZero
(s). This value target does not bootstrap, uses

single sample backups and has πAlphaZero as its target policy, making it a form
of on-policy learning2. Due to the exploration in the target policy, this value
target is biased by exploratory moves.

2 The replay buffer that is used for training the neural network also contains samples that
were sampled from older versions of πAlphaZero. One could argue that this makes AlphaZero
off-policy, but we do not go into the details about the effects of replay buffers in this work.
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Soft-Z target. Instead of waiting for the final game outcome, it is also possible
to use the MCTS values of the root node as a value target. We call this
approach soft-Z, similar to the naming used by Carlsson [6].

ysoft−Z(s) = v̂MCTS (s, s)

The MCTS value of a state converges to the true game value as the number
of simulations approaches infinity. However, as AlphaZero is limited in the
number of MCTS simulations it can perform, this value target is also biased
by exploratory moves during the MCTS search. This value target bootstraps
in the simulated game tree, averages multiple samples for a single backup (all
simulations of the MCTS search) and has the target policy πMCTS , making it
a form of off-policy learning.

A0C target. Moerland [12] has proposed to use a different value target in an
AlphaZero variation for continuous action spaces. This target selects one child
node of the root greedily, and backs up the MCTS value of this child:

yA0C(s) = v̂MCTS

(
K1
πMCTS,greedy

(s), s
)

This is again an off-policy value target. The target policy of this target takes
a single step using πMCTS,greedy and afterwards uses πMCTS . This target
policy should be closer to πAlphaZero,greedy, yet it still does not eliminate all
exploration due to the usage of πMCTS after the first step. This target again
bootstraps in the simulated game tree and averages multiple samples for a
single backup, yet over fewer samples than soft-Z does.

3.3 A greedy value target

As previously mentioned, we desire to find a value target which has a target
policy that closely approximates πAlphaZero,greedy, whilst following πAlphaZero
as our behavioural policy. The previously described value targets all fail in
that they do not have a greedy target policy and are therefore biased. The
AlphaZero target incorporates exploration from πAlphaZero. Soft-Z and A0C
both incorporate exploration from πMCTS . We propose a new greedy value
target, resulting in AlphaZero with greedy backups: A0GB. This target no
longer incorporates any exploration inside the target, allowing it to be valid
for a greedy policy. This value target is found by following the MCTS policy
greedily until a leaf- or terminal state is found. The value of this state is then
used as the value target:

yA0GB(s) = v̂MCTS

(
K∞πMCTS,greedy

(s), s
)

= v̂NN

(
K∞πMCTS,greedy

(s), s
)

This off-policy value target once again bootstraps, although it does deeper
backups than both soft-Z and A0C. It no longer is able to average multiple
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samples since the node from which the value is backed up only has a single
MCTS visit. This value target follows a greedy policy until reaching either
a terminal node or a leaf node, and therefore has a greedy target policy:
πMCTS,greedy. Although this policy is greedy, it is still only an approximation
for πAlphaZero,greedy. Descending the tree until a leaf node results in an in-
creasingly noisy policy as every subsequent node has fewer MCTS visits than
the previous one, whereas πAlphaZero,greedy would perform a full MCTS search
at every subsequent node. This difference results in value targets with higher
variance.

3.4 Relationship between value targets

We now describe in more detail how the different value targets relate to one
another. We can construct a value target based on three parameters, as il-
lustrated in Figure 2: two parameters of bootstrapping and one parameter
of backup width. In contrast to many other forms of reinforcement learning,
where the agent moves through the environment in one “direction”, AlphaZero
can move through the environment in two orthogonal directions: in the direc-
tion of the real game of self-play, and in the direction of the simulated games
within the MCTS trees. This also means that we can bootstrap in these two
directions. From here on, we consider n-step bootstrapping in these two di-
rections. It should be noted that in the resulting family of value targets, the
action selection or the tree search itself are not modified. We only change how
the training targets for the value head of the neural network are constructed
once a full game of self-play has been completed.

When dealing with real-game bootstrapping, the only policy we can fol-
low is πAlphaZero, as the states found through following this policy are the
only states that have actually been visited. This also implies that if we are
bootstrapping time-wise over a greater number of steps, more exploration is
incorporated in the value target.

Considering simulated-game bootstrapping, we can follow any policy as
long as this policy does not take us outside of the search tree. One particularly
interesting policy to follow is πMCTS,greedy, as this policy is the policy that
is currently estimated to be the strongest. The more steps that are taken in
this direction however, the fewer MCTS visits the states have received. This
results in a noisier policy and therefore could result in higher variance for the
value target.

The backup width is a measure for the amount of samples that support a
value target. We can choose to backup only the neural network value estimate,
v̂NN , or backup v̂MCTS , which is based on the whole subtree below this state in
the tree. v̂MCTS thus also includes exploratory moves in the value estimate. If
the simulated bootstrapping is done over more steps, these two values become
more similar as the node which is used to bootstrap from has fewer visits and
a smaller subtree below it. In the limit, at a leaf node, these values are equal
to one another: MCTS has only visited this state once. One could also design
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Fig. 2: The three dimensions in which a value target can vary. The area beyond
the red-dashed line (from Soft-Z to A0GB) cannot be reached as going deeper
in the simulated-game tree results in fewer visits of backup target and therefore
directly results in a narrower backup.

value targets that average values from multiple nodes in the tree, which is
another form of backing up values with a larger backup width. In this article,
we do not do this. Rather we only look at algorithms that backup the value
stored in a single node, being either v̂NN or v̂MCTS .

We can write all previously described value targets in the following manner:

ytarget (s) = v̂MCTS

(
Knsim
πMCTS,greedy

(sroot), sroot

)
sroot = Knreal

πAlphaZero
(s)

(8)

Where nsim and nreal are the amount of steps to bootstrap in the simulated
and the real game respectively. How all four value targets outlined above are
described by this unified notation can be seen in Table 1. An implementation
of these value targets is shown in Algorithm 2.

As previously mentioned, a desirable value target has a target policy that
approximates πAlphaZero,greedy closely with low bias and variance. Target poli-
cies that incorporate exploration within them result in biased value targets.
The amount of exploration incorporated in the value target is dependent on
the backup-width and the real-game backup depth. The variance is dependent
on all three dimensions: increasing the real-game backup depth results in an
increased variance, as the method becomes closer to a Monte Carlo method
than a TD method. Similarly, increasing the simulated-game backup depth
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also increases the variance. Reducing the backup-width results in larger vari-
ance as well. These effects result in the soft-Z, A0C and A0GB being viable
options in the bias-variance trade-off. Whereas soft-Z has the highest bias,
it also has the lowest variance. A0GB has the lowest bias, yet it also has the
highest variance. A0C sits in between these two targets on both measures. The
AlphaZero value target has both a high variance as well as a high bias, making
this value target sub-optimal in both aspects. This value target, however, is
on-policy and thus avoids the deadly triad.

Algorithm 2: Generalized sample generation of one game
Result: Training samples for neural network
// play a single game

game = new game() ;
moves = list();
while game not terminal do

s = game.get state() ;
Tree = game.search() ; // create and search tree

action = Tree.select action() ; // sample πAlphaZero

moves.append((s, Tree)); // store move & tree

game.move(action) ; // apply action in real game

end
// set policy and value targets

samples = list();
for i← 0 to length(moves) do

(s, Tree) = moves[i];
π = Tree.root.child visits() ; // set policy target

// traverse real game through πAlphaZero

(sreal, Treetarget) = moves[i+ nreal];
// follow πMCTS,greedy in simulated game tree

ssim = Treetarget.traverse(nsim);
v̂MCTS = Treetarget.value(ssim); // set value target

samples.append((s, π, v̂MCTS));

end

4 Experiments and results

In order to expose the differences between the various value targets, we first
present results from a simple tabular domain in Subsection 4.1. In this domain

nsim nreal width
AlphaZero 0 ∞ single sample
soft-Z 0 0 multi sample
A0C 1 0 multi sample
A0GB ∞ 0 single sample

Table 1: Relationship within the family of value targets in the unified notation
as described by Equation 8.
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Fig. 3: The gridworld domain on which a tabular version of AlphaZero is
demonstrated.

the optimal strategy is trivial, and the learned values are easy to analyze. Sub-
sequently, in Subsection 4.2, we present evaluations in the two board games
Connect-Four and Breakthrough as examples of complex sequential interac-
tions in large state spaces, which require function approximation. Finally, we
investigate similarities and differences in the effect of learning targets on value
and policy convergence between tabular learning and deep learning in Subsec-
tion 4.3.

4.1 A tabular domain

In this section, we show the behaviour of the different value targets in a small
tabular domain. First, we describe the domain and tabular AlphaZero modi-
fications, then we present and interpret the results.

Domain description The example Markov decision process depicted in Fig-
ure 3 illustrates a problem where significant exploration, with on average poor
returns, is needed to be able to reach a final positive reward. This domain
has similarities to the Deep Exploration domain [13], bsuite’s Deep Sea Ex-
ploration [14] and cliff-walking [22]. It is a single-player environment, where
the agent has to move around in a grid. In every turn the agent can choose
between moving up, right or down. The terminal states are the coloured blocks
with a number in it, which is the reward the agent receives for reaching that
state. It is obvious that the optimal policy would be to always move to the
right in every state. We use this domain to illustrate the issues of the different
backup variants.

Tabular AlphaZero modifications & experiment setup The tabular version of
AlphaZero no longer uses a neural network for function approximation. In-
stead, it uses policy and value tables with exponential moving average filters,
using fixed learning rates of 0.1 for the policy table and 0.025 for the value
table. The value table is initialized with a value of 0 for every state. The pol-
icy table is initialized with equal probabilities for every action. Exploration
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Fig. 4: Value estimates in the gridworld domain, after 40 000 games of self-play
with 100 MCTS simulations per move.

Fig. 5: Color indicates policy probability of moving right after 40 000 games of
self-play with 100 MCTS simulations per move. Arrows indicate the greedily
selected action according to the tabular policy.

and search hyperparameters set to the same values as for the domains with
function approximation that will be introduced in the next section. cUCT , fdir
and τ are set to 2.5, 0.25 and 1.0 respectively. The gridworld domain is set up
with length L = 8 and each agent is trained for 40 000 games of self-play.

Results The resulting value estimates and the corresponding probability of
moving right for the previously described experiment can be seen in Figure 4
and Figure 5 respectively. During training, state 7 has been visited 14, 43, 106
and 540 times in total for the AlphaZero, soft-Z, A0C and A0GB value targets
respectively. The A0GB value target results in the policy with the highest
probability of moving to the right for every state and is the only policy that
selects moving to the right when doing a greedy action selection, for all states.
Also, this value target results in the highest value estimates for every state.
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4.2 Domains with function approximation

In this section, we show the behaviour of the different value targets in two
domains with function approximation. The description of the domains and
corresponding hyperparameters is followed by the results and their interpre-
tation.

Domain description: Connect-Four and Breakthrough The value targets are
tested on the two board games Connect-Four and Breakthrough on a 6 × 6
board, illustrated in Figure 6. These domains are selected as they are both
commonly used for research on MCTS [17,3] and they require much less com-
putational power to perform experiments on than for example Chess or Go.

(a) Connect-Four (b) Breakthrough

Fig. 6: Illustrations of the two board game domains on which AlphaZero value
targets are compared.

Hyperparameter selection & experiment setup The large number of hyperpa-
rameters of AlphaZero and our computational resources limit the possibility
of doing extensive hyperparameter optimization. As our research is strongly
dependent on the amount of exploration within πMCTS and πAlphaZero, three
hyperparameters are identified to be most influential: cUCT , fdir and τ . Their
values are selected by individually varying them on Connect-Four for the orig-
inal AlphaZero value target. cUCT , fdir and τ are set to 2.5, 0.25 and 1.0
respectively. They are kept constant amongst all different value targets and
both games. 500 games of self-play are performed each neural network iter-
ation, and 100 MCTS simulations were executed per move during training.
Three experiments were performed. As we are interested in both the per-
formance of the trained NN by itself, as well as the performance of the full
greedy AlphaZero including MCTS, we dedicate the first two experiments to
this. The first experiment compares the training performance of the different
value targets on Connect-Four. Here, we evaluate the performance of a greedy
neural network policy against a pure MCTS opponent with 200 simulations
for 400 games every 10 network iterations. The second experiment evaluates
the training performance of AlphaZero, including MCTS, using the different
value targets on Breakthrough. Since all AlphaZero variants very quickly learn
to significantly outperform our pure MCTS baselines in Breakthrough, all Al-
phaZero variants were tested against a baseline AlphaZero that was trained
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for 50 000 games instead. The final experiment is designed to measure the
sensitivity of the value targets to exploration. Agents were trained for 25000
games on Connect-Four and pitted against a pure MCTS opponent with 5000
simulations for 800 games with varying temperature coefficient τ .

Results In Figure 7 and Figure 8, the training performance of AlphaZero is
shown for Connect-Four and Breakthrough respectively. As expected, the per-
formance of all AlphaZero agents increases over its training period, for both
Connect-Four as well as Breakthrough. In both games, the agents trained with
the original on-policy AlphaZero value target learns significantly slower than
the three alternative value targets. In addition, the final performance is worse.
Interestingly, there is only a marginal difference in performance between the
three alternative value targets. The results of the temperature sensitivity ex-
periment can be seen in Figure 9. The A0GB value target is less sensitive to
the temperature parameter than the original AlphaZero value target.

4.3 Value and policy convergence in tabular vs. deep learning

In this subsection, we show additional experiments to help explain the results
we have seen in the previous sections. In the toy domain, we saw a clear
advantage of using the A0GB value target. In the larger domains with function
approximation however, we saw the difference between the Soft-Z, A0C and
A0GB value targets diminish, even though they still clearly outperformed the
AlphaZero baseline. Here, we perform the tests on game of Tic-Tac-Toe, a
game with a state-space size that allows us to use both tabular as well as
neural network based AlphaZero approaches. In addition, as the game is easily
solved, we can compare value estimates and move selections done by AlphaZero
with the actual game-theoretic values of positions and moves. Three main
hypotheses are tested. First, we test the hypothesis that our A0GB value target
results in more accurate value estimates. Second, we test if the off-policy value

Fig. 7: Performance of the neural network, without MCTS, in Connect-Four
versus a pure MCTS opponent with 200 simulations.
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Fig. 8: Performance of AlphaZero, including MCTS, in 6x6 Breakthrough
against an on-policy trained AlphaZero, trained for 50 000 games.

Fig. 9: Performance of AlphaZero with 100 simulations after training for 25000
games on Connect-Four for different values of the temperature coefficient τ
during training. In the final evaluation, the moves are selected greedily.

targets translate to improved move selection (a stronger policy network) for
any given state. Third, we repeat the experiments that were performed for the
larger domains, and show how the trained agents’ win-rate is influenced by the
value targets. We show results for all three experiments both with a tabular
version of AlphaZero as well as with an NN-based version of AlphaZero.

Convergence to correct value estimates. In Subsection 3.4, we discussed the
intuition that all value targets, with the exception of A0GB, are biased esti-
mators that do not converge to the true values for a given state. Here, we test
this intuition by showing the mean absolute error between the true value and
the estimated values of states. We test on a random selection of 250 states,
kept the same across all experiments. The results are shown in Figure 10. We
find that for the tabular algorithm, A0GB most closely estimates the state
values. It should be noted though, that the mean error of the value estimates
remains high (> 0.55), after 50 000 games of self play. This could be explained
by the fact that our random selection of states includes many states that the
agent will barely or not at all visit during training, as they require selecting



20 Daniel Willemsen et al.

a sequence of poor moves before reaching these states. For the NN-based Al-
phaZero, which has been trained for 10 000 games, A0GB and A0C achieve
the smallest errors. The mean error after training is also significantly lower
compared to their tabular counterparts (≈ 0.10). This could be indicative of
the generalization capabilities of the neural network.

Effect of value estimates on policy and win rates. For the same random selec-
tion of states, we investigate the sum of the policy outputs of correct actions
for the neural network and policy table. The results can be seen in Figure 11.
Interestingly, the difference between Soft-Z, A0C and A0GB diminishes for the
tabular AlphaZero, whereas there were significant differences in their quality of
value estimates. In the NN-based AlphaZero, the differences are even smaller
between all four value targets. The random selection of states includes states
that are far from the line of optimal play. These states might not be visited
at all during training, preventing tabular AlphaZero from learning the correct
policy in these states.When greedily evaluating the policy, the difference be-
tween all value targets diminishes even further, as shown in Figure 12. When
agents are evaluated against each other in a tournament setting, it is found that
the agents quickly reach a performance level after a limited number of games
(10 000 for tabular AlphaZero, 1500 for neural network based AlphaZero)
that is not further improved upon. This could be caused by the agents quickly
learning the optimal moves for states close to the greedy line-of-action, and
all further training only improving action selection for states that are not en-
countered during greedy tournament play. Differences in performance between
all value targets are small. These results are shown in Figure 13.

(a) Tabular AlphaZero (b) Neural network based AlphaZero

Fig. 10: Mean Absolute Error (MAE) of the value estimates on Tic-Tac-Toe for
a fixed selection of 250 random states compared to their true value. The shaded
area indicates the standard deviation per run calculated over 10 separate runs
of AlphaZero.
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(a) Tabular AlphaZero (b) Neural network based AlphaZero

Fig. 11: Non-greedy performance of the policy head of AlphaZero on Tic-Tac-
Toe, for a fixed selection of 250 random states. The value on the y-axis indicates
the mean sum of the policy head/table of correct moves for each state. The
shaded area indicates the standard deviation calculated over 10 separate runs
of AlphaZero.

(a) Tabular AlphaZero (b) Neural network based AlphaZero

Fig. 12: Convergence of the policy towards greedily selecting a correct move
on Tic-Tac-Toe. Averaged over a fixed random selection of 250 states. The
shaded area indicates the standard deviation calculated over 10 separate runs
of AlphaZero.

5 Discussion and conclusions

In this work, we evaluated a number of different value targets to use in an
AlphaZero algorithm. The value target used in the original AlphaZero algo-
rithm incorporates exploration within the value target, which results in bias.
Therefore, AlphaZero is unable to converge to an optimal policy in some set-
tings. In addition, this value target suffers from high variance. We introduce a
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(a) Tabular AlphaZero (b) Neural network based AlphaZero

Fig. 13: Win rates of AlphaZero against a selection of opponent agents on
Tic-Tac-Toe. The opponent agents were 500 snapshots of partially trained
agents, resulting in a total of 1 000 played games for each evaluated agent.
As most opponent snapshots already learned to play optimally, the mean win
rate reached is only slightly higher than 0.5. The shaded area indicates the
standard deviation calculated over 10 separate runs of AlphaZero.

three-dimensional space to describe a family of training targets that subsumes
the original AlphaZero training target, two other variants from the literature
and a novel greedy training target.

Our results show that within a small tabular domain, the new greedy value
target is the only target resulting in the correct greedy action selection. This
confirms the hypothesis that with a limited amount of MCTS simulations,
all three non-greedy value targets are unable to find the optimal policy, even
after playing a large number of games in a small environment. Even though
this specific value target is the only tested value target that is able to find
the optimal policy in the tabular domain, there is only little difference in the
performance of different value targets from this family in the board games
Connect-Four and Breakthrough, although they all performed significantly
better than the original AlphaZero value target. All three off-policy value
targets are trading off variance and bias in different ways. It is possible that
the amount of variance is more important in the case of Connect-Four and
Breakthrough, as the amount of computation and the limited size of the neural
network prevent AlphaZero from finding a policy close to the optimal one. An
alternative explanation would be that limited hyperparameter tuning is a key
limiting factor in that it brings the performance of the three value targets closer
together. In the smaller domain of Tic-Tac-Toe, where both a tabular as well as
a NN-based AlphaZero is evaluated, using our greedy value target significantly
improves the quality of the value estimates in both the value head of the neural
network and tabular representations. Surprisingly, this improved performance
of the value estimates does not significantly improve the performance of the
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policy head of AlphaZero, in contrast to both the results in the larger domains
(Connect-Four and Breakthrough) as well as in the toy domain.

Future research could further investigate the relationship between value
estimates and playing performance, possibly on a larger variety of domains.
This could shed light on our results in Tic-Tac-Toe, and lead to techniques that
better utilize the higher quality value targets, translating them into greater
playing strength. Further work might also focus on further exploration of the
family of value targets (e.g. such as TD(λ) backups in the two dimensions
shown in Figure 1), or on combining multiple value estimators. One potential
off-policy value target variant worth exploring would traverse the real game
until an exploratory move is made, after which the simulated tree is followed
greedily. This removes exploration from real-game bootstrapping. It is also an
open question whether the winner’s curse applies to A0GB (see discussion in
Double Q-learning [8]). Another route worth exploring would be to train the
value head on additional moves that exist in the game tree but are not played
in the real game, similar to the TreeStrap algorithm that updates a heuristic
function based on all search node values for a minimax search [23]. This is now
possible as our proposed value target does not require a final game outcome.

Acknowledgments

The authors would like to thank the anonymous reviewers for their construc-
tive feedback, which helped improve the manuscript. This work is part of
the project Flexible Assets Bid Across Markets (FABAM, project number
TEUE117015), funded within the Dutch Topsector Energie / TKI Urban En-
ergy by Rijksdienst voor Ondernemend Nederland (RvO).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree
search. In: Advances in Neural Information Processing Systems, pp. 5360–5370 (2017)

2. Auger, D., Couetoux, A., Teytaud, O.: Continuous upper confidence trees with polyno-
mial exploration–consistency. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 194–209. Springer (2013)

3. Baier, H., Winands, M.H.: Monte-carlo tree search and minimax hybrids with heuristic
evaluation functions. In: Workshop on Computer Games, pp. 45–63. Springer (2014)

4. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in Games 4(1),
1–43 (2012). DOI 10.1109/TCIAIG.2012.2186810

5. Campbell, M., Hoane, A., hsiung Hsu, F.: Deep blue. Artificial Intelligence 134(1), 57
– 83 (2002). DOI https://doi.org/10.1016/S0004-3702(01)00129-1. URL http://www.

sciencedirect.com/science/article/pii/S0004370201001291

http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291


24 Daniel Willemsen et al.
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